Inga recensioner än

Azure Data Factory Training: Designing and Implementing Data Integration Solutions

Learning Tree International AB, i Stockholm (+5 orter)
3 dagar
23 950 SEK exkl. moms
3 dagar
23 950 SEK exkl. moms
Kursen är bokningsbar via arrangörens hemsida 🤗

Beskrivning av: Azure Data Factory Training: Designing and Implementing Data Integration Solutions

This course covers all key aspects of the Azure Data Factory v2 platform.

It is ideal for architects, developers, administrators, IT managers, and anyone else who would like to make the best possible use of this Azure service. Key areas covered include ADF v2 architecture, UI-based and automated data movement mechanisms, 10+ data transformation approaches, control-flow activities, reuse options, operational best-practises, and a multi-tiered approach to ADF security.

Special attention is paid to covering Azure services which are commonly used with ADF v2 solutions. These services are Azure Data Lake Storage Gen 2, Azure SQL Database, Azure Databricks, Azure Key Vault, Azure Functions, and a few others.

6 hands-on instructor-led labs are included with the course. These allow students to practise applying ADF v2 concepts and prepare them for real-world Azure data integration projects.

Microsoft Azure Fundamentals Training (AZ-900T00) or equivalent experience.

Azure Data Factory Training: Designing and Implementing Data Integration Solutions Delivery Methods

  • After-course instructor coaching benefit
  • Hands-on labs included

Azure Data Factory Training: Designing and Implementing Data Integration Solutions Course Benefits

  • Build end-to-end ETL and ELT solutions using Azure Data Factory v2
  • Architect, develop and deploy sophisticated, high-performance, easy-to-maintain and secure pipelines that integrate data from a variety of Azure and non-Azure data sources.
  • Apply the latest DevOps best practises available for the ADF v2 platform.

Azure Data Factory Training Outline

Introduction to ADF

  • Historical background: SSIS, ADF v1, other ETL/ELT tools
  • Key capabilities and benefits of ADF v2
  • Recent feature updates and enhancements

Core Architectural Components

  • Connectors: Azure services, databases, NoSQL, files, generic protocols, services & apps, custom
  • Pipelines
  • Activities: data movement, data transformation, control flow
  • Datasets: source, sink
  • Integration Runtimes: Azure, Self-Hosted, Azure-SSIS

Building and Executing Your First Pipeline

  • Creating ADF v2 instance
  • Creating a pipeline and associated activities
  • Executing the pipeline
  • Monitoring execution
  • Reviewing results

Data Movement

Copying Tools and SDKS

  • Copy Data Tool/Wizard
  • Copy activity
  • SDKs: Python, .NET
  • Automation: PowerShell, REST API, ARM Templates

Copying Considerations

  • File formats: Avro, binary, delimited, JSON, ORC, Parquet
  • Data store support matrix
  • Write behaviour: append, upsert, overwrite, write with custom logic
  • Schema and data type mapping
  • Fault tolerance options

Data Transformation

Transformation with Mapping Data Flows

  • Introduction to mapping data flows
  • Data flow canvas
  • Debug mode
  • Dealing with schema drift
  • Expression builder & language
  • Transformation types: Aggregate, Alter row, Conditional split, Derived column, Exists, Filter, Flatten, Join, Lookup, New branch, Pivot, Select, Sink, Sort, Source, Surrogate key, Union, Unpivot, Window

Transformation with External Services

  • Databricks: Notebook, Jar, Python
  • HDInsight: Hive, Pig, MapReduce, Streaming, Spark
  • Azure Machine Learning service
  • SQL Stored procedures
  • Azure Data Lake Analytics U-SQL
  • Custom activities with .NET or R

Control Flow

  • Purpose of activity dependencies: branching and chaining
  • Activity dependency conditions: succeeded, failed, skipped, completed
  • Control flow activities: Append Variable, Azure Function, Execute Pipeline, Filter, ForEach, Get Metadata, If Condition, Lookup, Set Variable, Until, Wait, Web

Runtime and Operations

  • Debugging
  • Monitoring: visual, Azure Monitor, SDKs, runtime-specific best practises
  • Scheduling execution with triggers: event-based, schedule, tumbling window
  • Performance, scalability, tuning
  • Common troubleshooting scenarios in activities, connectors, data flows and integration runtimes

DevOps with ADF

  • Quick introduction to source control with Git
  • Integration with GitHub and Azure DevOps platforms
  • Environment management: Development, QA, Production
  • Iterative development best practises
  • Continuous Integration (CI) pipelines
  • Continuous Delivery (CD) pipelines

Promoting Reuse

  • Templates: out-of-the-box and organisational
  • Parameters
  • Naming convention


  • Data movement security
  • Azure Key Vault
  • Self-hosted IR considerations
  • IP address blocks
  • Managed identity


Beställ information

Fyll i formuläret för att få mer information om Azure Data Factory Training: Designing and Implementing Data Integration Solutions, direkt från arrangören. Det är gratis och inte bindande!
Learning Tree International AB
Fleminggatan 7
112 26 Stockholm

Learning Tree International

Learning Tree är ett internationellt utbildningsföretag med över 40 års erfarenhet av att leverera utbildning till yrkesverksamma IT-proffs, projektledare, verksamhetsutvecklare och chefer. Vi erbjuder allt från enstaka kurser till globala utbildningsprogram, och vi hjälper våra kunder att införa hållbara processer som fungerar idag och förbereder...

Läs mer om Learning Tree International AB och visa alla utbildningar.